Skip to main content

Common math Errors

Error in mathematics

Today I will show you Common mistake made in Algebraic. and ways to go about them

Error    Correct/Justification/Example

  1. $$ \frac{2}{0} \neq 0 \text{ and } \frac{2}{0} \neq 2 $$ Division by zero is undefined
  2. \begin{align}  -3^2 & \neq  9 \\ \text{But} \\ (-3)^2 & = 9 \\ \text{ and} \\ -3^2 & = -9 \end{align} Watch parenthesis!
  3. \begin{align} (x^2)^3 & \neq  x^5 \quad \text{but} \\ (x^2)^3 & = x^2x^2x^2 \\ & = x^6 \end{align}
  4. \begin{align} \frac{a}{b+c} \neq & \frac{a}{b} + \frac{a}{c} \\ _ \text{Clear Example below} \\ \rightarrow\ \frac{1}{2} & = \frac{1}{1+1} \\ \text{but} \quad \frac{1}{1+1} & \neq \frac{1}{1} + \frac{1}{1} \\ \frac{1}{1} + \frac{1}{1} & = 2 \end{align}
  5. $$ \frac{1}{x^2+x^3} \neq x^{-2} + x^{-3} $$ A more complex of the previous error
  6. $$ -a(x-1) \neq -ax-a \quad \text{but} \\ {-a(x-1) = -ax+a } $$ Make sure you distribute the "-"!
  7. \begin{align} (x+a)^2 & \neq x^2+a^2 \quad \text{but} \\ (x+a)^2 & = (x+a)(x+a) \\  & = x^2+2xa+a2 \end{align}
  8. \begin{align} \require{cancel} \frac{\cancel{a}+bx}{\cancel{a}} & \neq -ax-b \quad \text{but} \\ \frac{a+bx}{a} & = \frac{a}{a}+\frac{bx}{a} \\  & = 1 + \frac{bx}{a} \end{align} Beware of incorrect canceling
  9. \begin{align} \sqrt{x^2 + a^2} & \neq  x + a \\ _ \text{Proof} \\ 5 & = \sqrt{25} \\ \sqrt{3^2 + 4^2} & = \sqrt{3^2} + \sqrt{4^2} \\ & = 3+4 \\ & = 7 \\ \text{and } 5 & \neq 7 \end{align}
  10. $$ \sqrt{x+a} \neq \sqrt{x}+ \sqrt{a} $$ See previous error
  11. $$ (x+a)^n \neq x^n+a^n  \text{   and   } \\ {\sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}} $$ More general versions of previous three errors
  12. \begin{align} 2(x+1)^2  & \neq   (2x+2)^2 \\ _ \text{Proof} \\ 2(x+1)^2 & = 2(x^2+2x+1) \\ & = 2x^2+4x+2 \end{align} Square first then distribute!
  13. $$ (2x+2)^2 \neq 2(x+1)^2 $$ See the previous example. you can not factor out a constant if there is a power on the parenthesis!
  14. \begin{align} \sqrt{-x^2 + a^2} & \neq -\sqrt{x^2 + a^2} \\ _ \text{But} \\ \sqrt{-x^2 + a^2} & = (-x^2 + a^2)^{\frac{1}{2}} \end{align} Now see the previous error
  15. \begin{align} \frac{a}{\left (\frac{b}{c} \right)} & \neq \frac{ab}{c} \\ _ \text{but} \\ \frac{a}{ \left (\frac{b}{c} \right) } & =\left(\frac{a}{b} \right)\left(\frac{1}{c} \right) \\ & = \frac{ac}{b} \end{align}
  16. \begin{align} \frac{\left (\frac{a}{b} \right)}{c} & \neq \frac{ac}{b} \\ _ \text{but} \\ \frac{\left (\frac{a}{b} \right)}{c} & =\left(\frac{a}{b} \right)\left(\frac{1}{c} \right) \\ & = \frac{a}{bc} \end{align}

Question misinterpret based on the way they look

Mostly question posted on the Internet is been misunderstood.
1.  Imaging someone post this \( 3\sqrt{x}\) as 3rootx
3rootx can be  \( 3\sqrt{x}\) or \( \sqrt[3]{x}\)
 $$ 3\sqrt{x} = 9^{\frac{1}{2}} x^{\frac{1}{2}} = \left(9x \right)^{\frac{1}{2}} = \sqrt{9x} $$
and $$ \sqrt[3]{x} = x^{ \frac{1}{3} } $$
2.  Real question \( \frac{a+2}{a-2} \) posted as a+2/a-2
to me this a+2/a-2 mean \( a + \frac{2}{a} - 2\) using parentheses ( ) will give make it easy to understand. Eg ( a+2 )/( a-2 )

Nb:

1.  Order of Operation

  • Do things in parentheses first
  • Exponents
  • Multiplication and Division
  • Addition and Subtraction

2.   Master the Key Concepts

  • Do not try to memorize the processes
  • Understand the process and logic that is involved

Comments

Popular Posts

Commutative Law of Addition

TOPIC OVERVIEW In this article, I will explain the use of the Commutative Law of Addition , and suggest a better way of thinking about the topic. Please add your ideas in the comments. THE COMMUTATIVE LAW ("change" the order of the numbers or letters) Over the years, people have found that when we add or multiply, the order of the numbers will  not affect the outcome. " Switching " or " changing " the order of numbers is called " commuting ". When we change the order of the numbers, we have applied the " Commutative Law ". In an addition problem, it is referred to as the " Commutative Law of Addition " such that Addition on the Real Number ( 2, -5, and $ \frac{2}{7} $  )  S , T it is true  that    S + T = T + S THE SUM OF 2 REAL NUMBERS Example Real Numbers 2 & 3 Let make S=2 & T=3 Solution S+T = T + S 2+3 = 3 + 2 5 = 5 Note: - This is the sum of 2 positive real numbers.  S...

prove to \( 48 \div 2(9+3) \) is 2

Topic Review  The question \( 48 \div 2(9+3) \) has been a war on the internet for years now. I will like you to follow my prove with a pen and note in your hand Maths Is The Study Of Balance You will probably think what does this guy mean my maths is the study of balance. Let take a look at weighing scale Weighing scale Weighing scale is a good example of left-hand side {LHS} and right-hand side {RHS} in our day to day mathematics. it also explains the value at the LHS is equal to the value at the RHS to make it stay balanced. we have \( x^a \times x^b =  x^{ab} \) example \( 2^2 \times 2^3 = 2^{2+3} = 2^5 = 32 \) to bring our answer back to the first step we need to use this \( x^{ab} = x^a \times x^b \) example \( 32 = 2^5 = 2^{2+3} = 2^2 \times 2^3 \) which tells you ether you use the reverse way \( x^a \times x^b =  x^{ab} \) or \( x^{ab} = x^a \times x^b \) you are still use the rule of indices only in the re...