Error in mathematics
Today I will show you Common mistake made in Algebraic. and ways to go about themError Correct/Justification/Example
- \frac{2}{0} \neq 0 \text{ and } \frac{2}{0} \neq 2 Division by zero is undefined
- \begin{align} -3^2 & \neq 9 \\ \text{But} \\ (-3)^2 & = 9 \\ \text{ and} \\ -3^2 & = -9 \end{align} Watch parenthesis!
- \begin{align} (x^2)^3 & \neq x^5 \quad \text{but} \\ (x^2)^3 & = x^2x^2x^2 \\ & = x^6 \end{align}
- \begin{align} \frac{a}{b+c} \neq & \frac{a}{b} + \frac{a}{c} \\ _ \text{Clear Example below} \\ \rightarrow\ \frac{1}{2} & = \frac{1}{1+1} \\ \text{but} \quad \frac{1}{1+1} & \neq \frac{1}{1} + \frac{1}{1} \\ \frac{1}{1} + \frac{1}{1} & = 2 \end{align}
- \frac{1}{x^2+x^3} \neq x^{-2} + x^{-3} A more complex of the previous error
- -a(x-1) \neq -ax-a \quad \text{but} \\ {-a(x-1) = -ax+a } Make sure you distribute the "-"!
- \begin{align} (x+a)^2 & \neq x^2+a^2 \quad \text{but} \\ (x+a)^2 & = (x+a)(x+a) \\ & = x^2+2xa+a2 \end{align}
- \begin{align} \require{cancel} \frac{\cancel{a}+bx}{\cancel{a}} & \neq -ax-b \quad \text{but} \\ \frac{a+bx}{a} & = \frac{a}{a}+\frac{bx}{a} \\ & = 1 + \frac{bx}{a} \end{align} Beware of incorrect canceling
- \begin{align} \sqrt{x^2 + a^2} & \neq x + a \\ _ \text{Proof} \\ 5 & = \sqrt{25} \\ \sqrt{3^2 + 4^2} & = \sqrt{3^2} + \sqrt{4^2} \\ & = 3+4 \\ & = 7 \\ \text{and } 5 & \neq 7 \end{align}
- \sqrt{x+a} \neq \sqrt{x}+ \sqrt{a} See previous error
- (x+a)^n \neq x^n+a^n \text{ and } \\ {\sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}} More general versions of previous three errors
- \begin{align} 2(x+1)^2 & \neq (2x+2)^2 \\ _ \text{Proof} \\ 2(x+1)^2 & = 2(x^2+2x+1) \\ & = 2x^2+4x+2 \end{align} Square first then distribute!
- (2x+2)^2 \neq 2(x+1)^2 See the previous example. you can not factor out a constant if there is a power on the parenthesis!
- \begin{align} \sqrt{-x^2 + a^2} & \neq -\sqrt{x^2 + a^2} \\ _ \text{But} \\ \sqrt{-x^2 + a^2} & = (-x^2 + a^2)^{\frac{1}{2}} \end{align} Now see the previous error
- \begin{align} \frac{a}{\left (\frac{b}{c} \right)} & \neq \frac{ab}{c} \\ _ \text{but} \\ \frac{a}{ \left (\frac{b}{c} \right) } & =\left(\frac{a}{b} \right)\left(\frac{1}{c} \right) \\ & = \frac{ac}{b} \end{align}
- \begin{align} \frac{\left (\frac{a}{b} \right)}{c} & \neq \frac{ac}{b} \\ _ \text{but} \\ \frac{\left (\frac{a}{b} \right)}{c} & =\left(\frac{a}{b} \right)\left(\frac{1}{c} \right) \\ & = \frac{a}{bc} \end{align}
Question misinterpret based on the way they look
Mostly question posted on the Internet is been misunderstood.
1. Imaging someone post this 3\sqrt{x} as 3rootx
3rootx can be 3\sqrt{x} or \sqrt[3]{x}
3\sqrt{x} = 9^{\frac{1}{2}} x^{\frac{1}{2}} = \left(9x \right)^{\frac{1}{2}} = \sqrt{9x}
and \sqrt[3]{x} = x^{ \frac{1}{3} }
2. Real question \frac{a+2}{a-2} posted as a+2/a-2
to me this a+2/a-2 mean a + \frac{2}{a} - 2 using parentheses ( ) will give make it easy to understand. Eg ( a+2 )/( a-2 )
2. Real question \frac{a+2}{a-2} posted as a+2/a-2
to me this a+2/a-2 mean a + \frac{2}{a} - 2 using parentheses ( ) will give make it easy to understand. Eg ( a+2 )/( a-2 )
Nb:
1. Order of Operation
- Do things in parentheses first
- Exponents
- Multiplication and Division
- Addition and Subtraction
2. Master the Key Concepts
- Do not try to memorize the processes
- Understand the process and logic that is involved
Comments
Post a Comment